An equivalence theorem for reduced Fell bundle C∗-algebras
نویسندگان
چکیده
We show that if E is an equivalence of upper semicontinuous Fell bundles B and C over groupoids, then there is a linking bundle L(E ) over the linking groupoid L such that the full cross-sectional algebra of L(E ) contains those of B and C as complementary full corners, and likewise for reduced cross-sectional algebras. We show how our results generalise to groupoid crossed-products the fact, proved by Quigg and Spielberg, that Raeburn’s symmetric imprimitivity theorem passes through the quotient map to reduced crossed products.
منابع مشابه
A Classic Morita Equivalence Result for Fell Bundle C∗-algebras
We show how to extend a classic Morita Equivalence Result of Green’s to the C∗-algebras of Fell bundles over transitive groupoids. Specifically, we show that if p : B → G is a saturated Fell bundle over a transitive groupoid G with stability group H = G(u) at u ∈ G(0), then C∗(G,B) is Morita equivalent to C∗(H,C ), where C = B|H . As an application, we show that if p : B → G is a Fell bundle ov...
متن کاملFell Bundles over Groupoids
We study the C*-algebras associated to Fell bundles over groupoids and give a notion of equivalence for Fell bundles which guarantees that the associated C*-algebras are strong Morita equivalent. As a corollary we show that any saturated Fell bundle is equivalent to a semi-direct product arising from the action of the groupoid on a C*-bundle. A C*-algebraic bundle (see [F2, §11]) over a locally...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملNuclearity and Exactness for Groupoid Crossed Product C∗-algebras
The focus of this thesis is the study of nuclearity and exactness for groupoid crossed product C∗-algebras. In particular, we present generalizations of two well-known facts from group dynamical systems and crossed products to the groupoid setting. First, we show that if G is an amenable groupoid acting on an upper-semicontinuous C∗-bundle A with nuclear section algebra A, then the associated g...
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013